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Abserlct--ln Shail & Gooden (1982) the problem of a solid particle translating in a semi-infinite 
fluid, whose surface is contaminated with a surfactant film. was examined in the quasi-steady 
Stokes flow r~gime. Various linearised models governing the variation of film concentration were 
considered, but the analysis was approximate in that the fluid motion generated was represented 
by that due to a Stokeslet situated at the centre of the particle. In this paper we remove the latter 
restriction and treat two specific solids, namely a rigid flat circular disk and a sphere, which move 
axisymmetrically perpendicular to the fluid surface. This surface is assumed to remain plane 
throughout the motion. The velocity field in the translating-disk problem is represented in terms 
of harmonic functions, and the resulting mixed boundary-value problems are reduced, for each of 
the film bchaviours examined, to the solution of sets of simultaneous Fredholm integral equations 
of the second kind. These equations are solved both iteratively and numerically, and the drag on 
the disk is computed. For the sphere a stream-function formulation in bispherical coordinates is 
used. Application of the boundary conditions at the sphere and film results in infinite sets of 
simultaneous linear equations for the cocllicicnts in the eigcnfunction expansion of the stream 
function. These equations are solved by the method of truncation, and the drag on the sphere is 
determined. 

I. I N T R O D U C T I O N  

In the first paper in this series (Shail & Gooden 1982), hereafter referred to as !, a start was 
made on examining a class of problems in which a solid particle translates in a semi-infinite 
fluid whose surface is contaminated with a monomolecular surfactant film. The fluid motion 
is assumed to be slow, quasi-steady and axisymmetric, permitting use of the linearised 
time-independent Stokes equations of motion. The constitutive properties of the surfactant 
film are described in terms of the Boussinesq coefficients of surface shear and dilatational 
viscosity, ~/and x. Further, the dynamic boundary conditions on the fluid velocity com- 
ponents in the surface film are those due to Scriven (1960). These conditions (equations [I] 
and [2] of !) involve the surface pressure Ps (or, equivalently, the surface concentration n of 
surfactant molecules via the equation of state of the film), which in general will vary with 
position in the film. Thus, in 1 various physical processes governing the variation of 
surfactant concentration were considered. These comprise surface diffusion, adsorbtion and 
desorbtion, and for a soluble surfactant bulk diffusion into the film from the substrate fluid. 
In all cases it is necessary to linearise about an equilibrium concentration in the manner 
suggested by Levich (1962) in order to obtain tractable boundary conditions. The further 
assumption that the surfactant-covered fluid boundary remains plane during the motion is 
also made. 

In I the various models outlined above were applied to the problem of determining the 
fluid motion due to an axial Stokeslet in the bulk fluid. This singular solution was then used, 
in conjunction with arguments due to Brenner (I 962), to derive approximate expressions for 
the drag on an arbitrary axisymmetric body which translates in a direction perpendicular to 
the surfactant film. In general these drag formulae are correct to O(a2/h2), where a is a 
typical dimension of the solid and h measures its depth below the film, and the analysis gives 
rise to no fewer than five dimensionless groups. However, being valid only when a/h ~. I, 
these formulae are of limited value in assessing the influence of the surfactant film on the 
resistive force experienced by the translating solid. 
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It is the purpose of this paper to remove, for two distinct geometries, the restriction 
a/h ,~ I. In particular for the various film processes we formulate and solve the appropriate 
axisymmetric boundary-value problems which arise in the cases of a translating disk and a 
sphere. The disk moves normal to its plane, which remains parallel to the surfactant film, 
and the sphere moves without rotation in a direction normal to the film. 

In section 2 the basic equations and boundary conditions of the theory are recapitulated, 
and in section 3 the disk problem is formulated using a representation of the bulk-fluid 
velocity field in terms of harmonic functions. The boundary conditions at the surfactant film 
and on the plane of the disk then lead to sets of dual integral equations, which are reduced 
using well-known methods (see, for example, Sneddon 1966) to the solution of coupled sets 
of Fredhoim integral equations of the second kind. In the cases of surface diffusion and 
adsorption/desorption, these integral equations are integrated both iteratively (when 
a/h ~ I) and numerically in section 4, and representative numerical results are presented 
which exhibit the effects of the surface film on the drag force on the disk. For bulk diffusion 
into the film from the substrate our linearised model only encompasses the case of small 
Peclet number in which diffusion dominates over convection. As an example, in section 3 
the governing set of three simultaneous Fredholm integral equations is derived for the 
situation of a sealed disk, i.e. the normal derivative of the solute concentration vanishes on 
the disk. Since this class of problem does not seem to be of as much interest as the surface 
diffusion and adsorption/desorption cases, we restrict ourselves to some remarks in section 
4 concerning the iterative solution of the example presented. 

Section 5 deals with the analogous boundary-value problems which arise when the 
translating body is a sphere. Attention is focussed on the surface diffusion and 
adsorption/desorption film processes, and a representation of the velocity field in terms of 
a stream function is used.t Bisphericai coordinates and the eigenfunction expansion of the 
stream function due to Stimson & Jeffery (1926) are appropriate, and the film boundary 
conditions and the no-slip condition on the sphere lead to infinite sets of simultaneous linear 
equations for the coefficients in the stream-function expansion. These sets of equations are 
truncated and solved numerically in section 6, and the drag force computed for a range of 
values of the ratio sphere radius to depth of centre below the film, and the dimensionless 
groups introduced in i. 

2. B A S I C  E Q U A T I O N S  

A semi-infinite expanse of viscous incompressible fluid, with coefficient of viscosity/~, 
occupies the region : > 0, where (p, ~, z) are cylindrical polar coordinates with z-axis 
vertically downwards. The surface z = 0 is contaminated with a monomolecular surfactant 
film whose coefficients of surface shear and dilational viscosity are ~/and x, respectively. The 
motion of the bulk fluid is caused by the steady translation, with constant speed Uz, of a 
solid body whose surface S has the z-axis as an axis of rotational symmetry. Thus, the fluid 
velocity vector v is axisymmetric with cylindrical components (u(p,:), O, w(p, :)), the 
motion being assumed to be sufficiently slow for the quasi-steady Stokes creeping-motion 
approximation to be made. This requires that Ua/v ,~ I and Ua2/vh ~, !, where v is the 
kinematic viscosity of the bulk fluid, a is a typical dimension of the translating solid, and 
h a measure of its depth below ,- = 0. The linearised time-independent equations of motion 
and continuity are then 

p,p=~ F 2 u -  , [ i ]  

t i t  is clear that the disk problems of .section 3 can also be treated using a strcam function. However a 
formulation in terms of harmonic functions is preferred since this approach is also available for non-axially 
symmetric configurations. 
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where 

d-" I d d" 

and p is the dynamic pressure field. 
At the boundary S of  the solid the no-slip condition is imposed, i:e. 

v ( p . z ) = U z ,  (p,z)~S; [4] 

further v, p, and all components of  stress in the fluid are required to tend to zero as 
p'. + zL.. ,~. We also suppose as in I that the surfactant layer remains plane and incident 
with : - -0  throughout the motion, which implies that 

w = 0 o n :  = 0 , 0 < p  < oo. [51 

The remaining boundary conditions applied at z = 0 depend on the physics of  the film 
process which maintains the concentration of  surfactant molecules in the film, and these 
conditions are extensively discussed in I. For the case of  isothermal surface diffusion in a 
gaseous film we have that 

= - , , .  + ( ,  + y o n -  = 0 .  [61 

where ~ = kTn,/D,. Here k is Boltzmann's constant, T the temperature, no the equilibrium 
concentration and D, the coefficient of  surface diffusion. When the dominating film process 
is adsorption from and desorption to the bulk fluid of  surfactant, the appropriate linearised 
boundary condition is 

-"~= "+~+--~-)[~e~k ,~p]- o.-=o, {71 

where the constant fl -~ is a measure of  the time required for the establishment of an 
adsorbtion equilibrium (Levich 1962). It is worth noting that using the equation of  con- 
tinuity [31. the terms in braces in [61 and [7] can be replaced by -d"w/0pd.-.  

Consider next bulk diffusion from the substrate into the film. For a soluble surfactant 
the solute concentration c(p,z) is defined throughout the bulk fluid, and we write 
c = co + c', where co is the constant equilibrium concentration. When the Peclet number 
Ua/D o ,~ I, where D,~ is the bulk diffusion coefficient, c '  satisfies Laplace's equation 

MF Voi 9. No. ~--B 

V"c' = 0. [8] 



230 R. SHALL and D. K. GOODEN 

According to I the equation of  surface mass balance in the film gives the linearised condition 

no d Do 8n' 
- - -  ( p u )  = - -  - -  o n  : = 0 ,  [ 9 ]  
p dp h o tz: 

where n'  --- hoc', ho being the adsorbtion depth. Equation [9] must be taken in conjunction 
with the Scriven boundary condition 

uo=-a---:+(,1+ I/'~p\ ~,/ on==o, tlo] 

and an equation of state, which for a gaseous film is 

p,=kTn. [it] 

Note that the surface concentration n(p) is given by n(p) = no + n'(p, 0), since n'(p, =), the 
fictitious "surface concentration" is defined throughout the fluid by n'  = hoe'. 

3. T H E  T R A N S L A T I N G  DISK P R O B L E M  

The equations and model conditions of section 2 are now applied to the particular case 
in which the translating body is a thin rigid circular disk of radius a, at an instantaneous 
depth h below the surface. The no-slip requirements [4] now read 

u(t,.h)=O. [~21 

w(p,h)= U, both on : = h , O < p  <a. [13] 

Further the pressure p and all components of the stress tensor must be continuous across 
- = h f o r  a<_p <oo. 

In order to construct a representation of the velocity field v, we observe that for the 
problem of the steady broadside motion of a disk through an unbounded fluid at rest at 
infinity, the velocity and pressure fields, v 0 and P0, can be written as 

v0=(: -h)v~ -~z, [14] 

a¢, [151 po = 2,u 0--' 

where ¢, is an axisymmetric harmonic function and the disk lies in the plane z = h (Gupta 
1957). Assuming that the pressure at infinity is zero, a suitable form for ~b, even with respect 
to the plane = --- h, is 

~0 ~̧  
¢, = .4 ( S ) J o ( S p )  e - ' t :  - *l d s ,  [161 

where A(s) is determined from the dual integral equations arising from the boundary 
conditions on : = h. Note that [14] gives uo(p, h) = 0 for all p. For our semi-infinite fluid 
problem we next add to [14] a regular solution v~ of the Navier-Stokes equations, to be 
chosen so as to satisfy [5] and the appropriate condition from [6], [7], or [9] and [10]. A 
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suitable form in terms of harmonic functions V, W is 

Vl = ( :  - h ) ¢ V  - Vz + ¢ W ,  Url 

p, = 2/~ , [18] 

where 

~0 7¢ 
V = C(s)Jo(sp)  e - " : -h i  ds, [191 

W = D(s )Jo(sp)  e -~:-h~ ds. [2o] 

The velocity field v 0 + v t cannot be made to satisfy both [12] and [13] on the disk, but only 
[13]. say. Thus we add to v 0 + v t a further solution v z, chosen to enable satisfaction of [12]. 
whilst giving a zero contribution to the z-component of velocity on the disk. A suitable 
solution in terms of harmonics ¢,' and ;( is 

v, = ( :  - h ) l z ¢ , '  - ¢ , ' z  + Cz ,  [211 

p, = 2~ d~ ' ,  [22] 

where ~,' = tg;(/& is odd with respect to : = h. thereby ensuring that u,(p, h) = 0 for p > a. 
Thus for ¢,' and g we have the forms 

~, ,(p, , )  B(s  )j,,(sp ) e-,I.. -hi ds, [23] 

"Z(P, s)  = s - 'B(s )Jo(sp)  e -,1: -hi ds, 
) 

[241 

where the positive sign is taken in [23] for .- - h  < 0 and the negative for .- - h  > 0. 
Combining together the various solutions the complete velocity and pressure fields are 

v = V o -I- Vl -t- V 2 

=( :  - h)iz(@ + ~ ' +  v)-(~ +¢, '+  V)z+ r ' (w + z), [25] 

d 
p = 2~,E... (~, + ~ ' +  v). [26] 

Further, the stress components t,:, L.- in the bulk fluid are found as 

~.:=2# ( z - h )  (~b+Cr'+V)+--~-p +d--~= , [271 

and 

r....=2~ ( - - / i ) ~ ( ¢ , +  + v ) - ~ ( C , + v ) +  =- . [281 
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3. I Sur face  dif fusion in the f i l m  

Suppose that the dominating film process is surface diffusion. Then the solution [25] 
and [26] must satisfy conditions [5] and [6] on z = 0, [12] and [13] on the disk. and the 
continuity requirements for p and the stresses across the plane z = h for p > a. Using the 
quoted Hankel representations of the various harmonic functions. [5] and [6] give 

and 

sh{  - (A + B ) e  -'h + C ~"~.~ - A e - ~  - ( C  + s D ) e  *h = O. [291 

l~[sh{ - (A + B )  e -,h + C e '*} + (A + 2B) e -,h + ( C  - s D )  e ~*] 

= - { a  +s : (q  + x ) } [ h { ( A  + B ) e - ' h + C e ~ h } - s - t B e - ~ * - D C h ] .  [301 

Conditions [12] and [13] in the plane of  the disk require that for 0 < p < a, 

~ '~ { a ( s )  + s D ( s ) } J l ( S e  ) d.~ = O, [31] 
} 

and 

I * { A (s ) + C(s  ) + s D ( s  )}Jo(sp ) ds  = - U. [321 
} 

From [16] and [26] continuity of pressure across ..- = h for p > a implies that 

f " sA (s )Jo(sp)  ds = 0, > a, [33] P 
I 

and continuity of  the stress components [27] and [28] requires the continuity of O~,'/?p 

across z = h for p > a, i.e. 

f f  B ( s ) J l ( s p ) d s  = O, > a. [34] P 

Equations [29] and [30] can be solved to express C and D in terms of  A and B; [31] 
to [34] then furnish a set of  coupled dual integral equations for A and B, which may be 
solved using standard techniques (Sneddon 1966). To this end we introduce functions g ( t ) ,  

j ( t )  such that 

A (s)  = g ( t )  cos st  dr, [35] 

and 

f 
a 

B ( s )  = - t - t j ( t )  sin st  dr; [36] 
I 

[33] and [34] are thereby satisfied identically. Also, substituting [35] into [32], interchanging 
orders of integration and using the result 

f¢ " Z,(sp)cos st ds = (p" - t " ) -~- t f (p  - t ) ,  
) 
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we obtain 

= -U- {C(s)+sD(s)}Jo(sp)ds, O<p <a, 
(p 

an Abel integral equation for g(t) whose solution may be reduced to 

2U 2 
g(t) = {C(s) + sD(s)} cos st ds, 0 < t < a. [37] 

7[ ~ ) 

A similar calculation using [36] and [31] leads to 

j( t)  = 2t sD(s) sin st ds, 0 < t < a. 
7C 

[38] 

We next solve [29] and [30] for C, D in terms of  A, B and thence, using [35] and [36], 
express C and D in terms o fg ( t )  andj( t ) .  Substituting for C and D in [37] and [38] then 
supplies the following pair of coupled Fredhoim integral equations of the second kind for 
g(t) and j(t): 

f. {I: t 2 g(u) q(I + 2sh + 2s2h 2) + 2gs(I + 2sh) -z,h 
m g(t) - n q + 2gs e cos su cos st ds du 

2U 4 f :  _ , j ( u ) { f f  s~h(qh + 2lZ)e_Z,,sinsucosst ds}du, - -  11 

n n q + 2 ~  
[39] 

and 

---n u-lj(u) q - ~ - - ~  e-Z'*sinsu sinst ds du 

fo {f0 } 4t g(11) ~ s2h(qh + 2/t) 
n q + 2/~s e -2"* cos su sin st ds d11, [40] 

where q = a  +s-'(q + x) and 0 <  t < a .  Equations [39] and [40] can be conveniently 
non-dimensionalised by writing x = t/a, y =u/a, c =a/h, G(x)= U-Jg(t), 
J(x) = U -tt - tj(/), and p = sh, giving 

G(x) - K,(x,y)G(y)dy . . . .  
7~ 

I 

Ks(x, y)J(y) dy, [41] 

and 

J ( x ) -  K,(x,y)JO')dy = - Ks(y,x)GO,')dy, O<x < I, [42] 

where the kernels K,, i = I . . . . .  3 are defined by 

•f { 2¢NIP3 ~ -,p 
Ka(x,y)=2--~ 1+ 2p+ 2 p : - l  +tNtp+t.N~.je, . ,  - cos tpxcos tpydp,  [43] 

ff { 2tN, p<! -p): "1, K,(x,. .v) =n'2t 1 - 2 p  + 2 p " -  I +tNtp +t"N,.p"J e-~s incpx  sin cpy dp, [44] 
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K j ( x , y ) = 4 E f f { p : +  ~Ntp" } -2p -n I + ~Ntp + &N,p" e cos Epx sin Epy dp. [45] 

In [43]-[45], N~ -- 2gD,/nokTa and N2 = (7 + r)DjnokTa:, two of the dimensionless groups 
introduced in I. Note that the kernels K~ and K., are symmetric. 

We next calculate the drag fo rce -  Fz on the disk. where 

F = - F [r::]~,+ p dp d~, [46] 
j s  | 

and the integral is taken over one side St of the disk. Using [28] this can be written as 

J0 \ Oz ,]h + p dp, [47] 

and from [16] and [35], 

' [fo {;0 t] -~z , . =  pdp p g(t) Jl(sp)cosstds dt . [48] 

Substituting [48] into [47], interchanging the orders of integration and performing the 
p-integration leads to 

f0{f0 } ) ~ 
F = - 8nlta g(t Jt(sa) cos st ds dt 

f: = - 8 ~  g ( t )  dt. [49] 

In terms of the non-dimensionalisation of the previous paragraph, [49] reads 

f0' F = - 8nl~aU G(x) dx, [501 

where G(x) is found by a numerical integration of[41] and [42]. We note that in the limit 
h--*~, i.e. c--*0, [41] and [42] have the solutions 

and from [50] 

the known infinite-fluid result. 

G ( x )  = - 2 / n ,  J ( x )  = O, 

F,~ = 161taU, 

3.2 Adsorption from the desorbtion to the bulk fluid 
This problem differs from that of 3.1 in that condition [6] is replaced by [7]; hence all 

that is necessary is to set ~t = 0 and replace t /+  x by q + x + n,~T[l - ~ in the previous 
subsection. The resulting governing integral equations retain the forms [41] and [42] with 
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the kernels K,(x, y), i = 1 . . . . .  3, now defined by 

and 

;:{ K~(x.y) =--2' I + 2p + 2p'- 

I:f K~(x, y )  = _2' I - 2p + 2p" 
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K3(x,)') 4' I0~ { =~ p '+  _ _  p(! - ? ) }  
I + cN3p e -'p cos ,px  sin ,py dp. [53] 

In [51]-[53], N~ = (n~'Tfl -~ + ~1 + x)/2pa, as defined in I. Again the drag is given by [50]. 

3.3 Bulk diffusion into the film 
We consider first the boundary-value problem for the perturbation concentration 

c' = n'/h. of the soluble surfactant, which satisfies Laplace's equation [8]. In the case of 
an impervious sealed disk, there is zero flux of solute across the disk; thus the flux dn'/t?: 
must be continuous across the plane : = h, and zero on the disk. Further c' must be 
continuous across : = h for p > a and tend to zero as p2 + :2...Q¢, and we have the mixed 
conditions 

d---~'- = 0 on : = h, 0 < p < a, [54] 

n ' = 0 o n . ' = h , p > a ,  [55] 

with n'--,0 as p"+ .'2---,oo. 
A suitable representation for n' is 

n ' =  {P(s )e - ' : -h l+Q(s )ea: -h ' }Jo ( sp )ds ,  O < -  <h, [561 

n ' =  R(s)Jo(sp)e-~:-h~ds, z > h, [57] 
0 

and continuity of flux across : = h requires that R = P - Q. The mixed conditions [54] 
and [55] then lead to the dual integral equations 

and 

sQ (s)Jo(sp) ds = s P (s)Jo(sp) ds, 0 < p < a, 

fo "~ Q (s)Jo(sp) ds = O. p > a. 

[581 

[591 

To solve [58] and [59] we follow Sneddon (1966) and put 

Q(s) = ; :  i(t)sinst dt. !(0) = O, [601 

_2p_'- 1,e- 'cos,pxcos d?, [Sll i + eN~p J 'PY 

= P): e--', sin,px sin,py dp, t52J 
1 + EN~p J 
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which satisfies [59] identically. The substitution of [60] into [58] and standard manipu- 
lations then give the relation 

l ( t )  P(s )  sin st ds, 0 _< t _< a. [61] 

Turning next to the conditions on the surface, [9], [25] and [56] give 

n,[hs [(A + B) e -,h + C e '~} - B e - , h  _ sD e 'h] = D , ) (  _ p e ,  h + Q e -'~), 
ho 

[62] 

whilst [10] and [I I] supply 

2# {(A + B) e-  '* + C e'*} = k T ( P  #* + Q e -'~) 

- (q + x)[hs{(A + B) e -  ,h + C e 'h} - g e -  '~ - sD e'h]. [63] 

The conditions on z = 0 are completed by [5] resulting in [30], and [30], [62] and [63] are 
now solved to express C, D and P in terms of A, B and Q. With C, D and P written in 
terms o f  g ( t ) , j ( t )  and I(t), [37], [38] and [61] then provide a set of  three simultaneous 
Fredholm equations for g( t ) ,  j ( t )  and I(t). Using the non-dimensionalisation of the 
previous sections and defining L ( x ) =  Dol(t)/Uh,no, these equations take the forms 

fo ' 2 Jot G ( x )  - K t ( x , y ) G ( y ) d y  = - -  - K,(x,y)J(y) dy - N, I K~(x, y ) L O ' ) d y ,  [641 

f f f J ( x )  - K,(x, Y)J0') dy = - K4(y, x)G0 ' )  dy - N4 K~(x, y)LO')  dy, 
) i I 

[65] 

and 

; f I L ( x ) -  K 3 ( x , y ) L ( y ) d y  = - K s O ' , x ) G O ' ) d y -  K~(x ,y )J (y )dy ,  O < x  < I. 

[66] 

The kernels K,(x ,y ) ,  i = I . . . . .  6, are defined by 

f f {  2p: } e _ : P c o s , p x c o s c p y d p  ' 2~ I + 2p + 2p ' - 1 + 3?4 + ~ Nsp Kt(x, Y) = 
[67] 

K,(x, v ) = , n ) 1 _  2p + 2p'- - I + N4 + ~N~p j e-'-P sin ~px sin epy dp, [68] 

2,;°,.{ } ,  
K~(x, y)  = --n I - I +N4+¢N.~p  e sin cpx sin ~p)'. dp, [69] 

4 ( [ I p l[ [ + P ( N4 + ( p ) ~}[ [ ~p 
K~(x,y)  = - -  e cos ¢px sin ¢p.v dp, [70] 

n J,  1 + Na + cN~p 
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4~ I s p e - z. c o s  ~px sin cpy dp, 
Ks(x,y)=-~.10 1 + N,+~N~p [71] 

and 

K~(x,y) 4E I s I - p  --'Psin~px sinEpv dp. 
=~.1o I + N~+~N.~P e [721 

In [67]-[72] N~ and ,% are the final pair of dimensionless groups introduced in I, with 
N~ = hon~kT/2t~Do and N5 = (rl + x)/2taa, and the drag on the disk is again furnished by 
tso]. 

Similar formulations can be given for other linear boundary conditions applied to the 
solute concentration at the disk; for example the solute concentration may be maintained 
at the equilibrium concentration co. This leads to a slight modification of the dual integral 
equations [58] and [59], but it is straightforward to derive the governing set of three 
Fredholm integral equations of the second kind. 

4. ITERATIVE AND N U M E R I C A L  RESULTS FOR THE DISK 

None of the governing integral equations formulated in the previous section are capable 
of exact analytic solution. Thus two possible approaches are asymptotic solution, valid 
when one or more of the parameters in the problem are small, and a full numerical 
treatment. In the following paragraphs both these options are used. 

4. I Surface diffusion model 
The governing integral equations are [41] and [42] with the various kernel functions 

given in [43]-[45]. As a first example of the asymptotic approach, suppose that ~ = a/h ~ I, 
and both of the parameters N t, N 2 are of order unity. The kernels [43]-[45] are easily 
expanded in power series in c, and the first few terms in the Neumann iterative solution 
of [411 and [421 are found as 

G(x)=  I + - ~ + - n  n - c"+ ~ 6 - -+3Nj2n  - - - ~ ) c  +O(~ 4) , 

[73] 

and 

[74] 

The drag ratio F/F,: then follows from [50] and [73] as 

~--~= I + - c  + -  c" - - -  n n ~ 4- + 3N," ~ + O(c4), [75] 
3 

and is independent of N~ to this order of approximation. 
The first three terms in [75] confirm the asymptotic result predicted by [53] in I. When 

c = 0 . 1 .  wi th  N,  = N, = 1, [75] gives F/F~. = 1.1045, whereas the numerically computed 
ratio is 1.1044. Indeed [75] may be confidently used for c as large as 0.4, with an error 
of the order of only a few per cent. For larger values of ¢ the accuracy of [75] falls off 
rapidly. A considerable number of further iterative results are easily obtained for ¢ <~ i 
with N~ and N2 of various orders in c, and we quote two further examples. Inspection of 



238 a. SHALL and o. K GoooE~ 

the integral equations shows that [75] is valid when N~ = O(I) and N,,=O(E). For 
NI = O(1), N2 = O(e- i )  and AI = EN2 = O(1), calculation shows that the formula [75] is 
changed by the addition of a term 15AtNI/2 in the bracketed coefficient of E 3. 

In order to carry out the numerical integration of [41] and [42] for varying values of 
a/h, NI and N,, a NAG library routine based on EI-gendi's (1969) method was used. 
Details of  this method can be found in Shall & Gooden (I 981) and Chakrabarti, Gooden 
& Shail (1982), and it will not be described further here. To exhibit the effect of the 
surfactant film on the drag ratio F/F,: we present the results of numerical computations 
for E = !.0 and various values of NI and N, In table 1 sample values of F/F,: are given, 
and figure 1 shows on a log-linear plot the variation of F/F,: with N t for specimen values 
of N,. Inspection of the table reveals that for fixed Nt and increasing N= the drag ratio 
F/F,: increases monotonically, whereas for fixed N, and increasing N t the ratio decreases 
monotonically. This is to be expected since as N2---, ~o the surfactant responds increasingly 
as a rigid bounding plane, whereas when N~--,oc the response is that of a free 
uncontaminated surface. In the limit of a rigid bounding surface, F/F~ = 3.1213, and for 
a free surface the corresponding ratio is 2.0536. 

For smaller values of a/h the effects of the surfactant diminish and for ( = 0.1 there 
is only a variation of the order of 4 ~  over the ranges 0 < N~, N, < oo; limiting values are 
F/F® = 1.1049 for a rigid bounding plane, and F/F,~ = 1.0678 for a free surface. 

Table I. Values of F/F, for a/h = 1.0 and various values o f  N I. iV: 

N! 
N 2 0.025 0.05 O. 1 0.25 0.5 t .0  

0.00 3.0795 3.0412 2.9738 2.8222 2.6631 2.4916 

0.025 3.0813 3.0446 2.9794 2.8308 2.6725 2.4997 

0.05 3.0830 3.0476 2.9844 2.8386 2.6813 2.5076 

0.1 3.0857 3.0526 2.9929 2.8527 2.6975 2.5225 

0.25 3.0915 3.0633 3.0116 2.8853 2.7378 2.5618 

0.5 3.0972 3.0742 3.0313 2.9221 2.7868 2.6144 

1.0 3.1034 3.0861 3.0531 2.9659 2.8504 2.6901 

1.5 3.1068 3.0927 3.0656 2.9921 2.8911 2.7432 

2.0 3.1090 3.0970 3.0738 3.0101 2.9200 2.7832 

5.0 3.1147 3.1081 3.0952 3.0584 3.0027 2.9084 

10.0 3.1174 3.1136 3.1059 3.0837 3.0487 2.9859 

50.0 3.1204 3.1194 3.1175 3.1119 3.1026 3.0846 

100.0 3.1208 3.1203 3.1194 3.1164 3.1115 3.1018 

N~ 
N 2 1.5 2.0 5.0 10.0 50.0 tO0.O 

0.00 2.3985 2.3659 2.1970 2.1331 2.0713 2.0626 

0.025 2.4053 2.3451 2.2000 2.1347 2.0716 2.0628 

0.05 2.4120 2.3508 2.2030 2.1363 2.0720 2.0630 

0.1 2.4248 2.3618" 2.2089 2.1396 2.0727 2.0633 

0.25 2.4597 2.3925 2.2259 2.1492 2.0748 2.0644 

0.5 2.5087 2.4371 2.2524 2.1647 2.O784 2.0662 

I.O 2.5840 2.5085 2.2999 2.1937 2,0853 2.O698 

1.5 2.6400 2.5639 2.3413 2.2206 2.0921 2.0733 

2.0 2.6840 2.6087 2.3779 2.2456 2.0988 2.0768 

5.0 2.8317 2.7679 2.5343 2.3663 2.1368 2.O971 

10.0 2.9310 2.8825 2.6789 2.5006 2.1929 2.1288 

50.0 3.0674 3.0508 2.9630 2.8498 2.4624 2.3168 

100.0 3.0924 3.0832 3.0318 2.9584 2.6346 2.4626 
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Figure I. Log-l inear plots of  F/F~ against N I for N 2 = O, 0.1, 1.0, and I0 in the surface diffusion 
case for the disk with a/h = I.O. 
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4.2 Adsorption/desorption model 
The integr:tl equations to be solved are [41] and [42] with the kernel functions given 

by [51]-[53]. Consider first the iterative solution when c = a/h ,~ I. In the case when 
N~ = O(I), it is found that 

{ ! 1 (~  3N~\ 1 ( 8  I 6N, } 
G(x)= 2~ I +  c+-r~ + _ . ~ ) ~ 2 + ~  - 3 +  n -3N~- ' -x:)~ ~ +O(~4), [76] 

=~xc: 1- +3N~ ~ +O(~), [77] 

and 

F = I + - ¢ + -  +----: ~-+ - + -3N~-" c-~+O(~), [78] 

the first three terms in [78] agreeing with the result derived from [591 in I. For N~ = i and 
c = 0.1, [78] predicts that F/F~ = 1.0722, the numerically computed value being 1.0723. 

As a second illustrative iterative solution, suppose that N.~=O(~-t) and set 
A., = ~N., = O(!). We then find that 

! I  2a 4~x-", I {~-~ ( ~)//} ] 
G(x)=  I + - - c + - - - r c ' + -  - x : +  ~3+O(c~) , t791 

4 ,( 
J ( x ) = - x / ~ - I - - - ¢  +O(~4), [80] 

7[ 7I 
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and 

F I + - - ~  +-----rE" + " _-2-3-.- E3 + O(E4) ' 
F,~ ~ ~- rr 

[81] 

where ~, fl, 7 are expressed in terms of  the exponential integral E~(.v) (Abramowitz & 
Stegun 1964) as 

,'t = 
3 1 1 2 "'A 
2 2A., ~ A2' ~ 3 e "  "Et(2/A:). 

5 3 i ! ! 2 e,,A:EI(2/A,), 
f l = 2  4A: + 2 A ,  ~ 2A, 3 ~ A? A )  

and 

= 
3 1 
4 2A:: 

I 2(A: + 
A2 + 1 _  ) e2/A:EI(2/A:). 

. A2 4 

For E = 0.1 and A: = I, [81] supplies the result F/F,~ = 1.0880 which agrees to 4 decimal 
places with the numerically computed result. 

We next present some results of  a numerical integration of  [41] and [42] for a/h = !.0, 
a/h = 0.1, and various values of  N~. The values obtained for F/F~ are given in table 2, 
and figure 2 shows log-linear plots of  F/laaU against N3 for a/h = 1.0 and 0.1. The values 
of  F/laaU for fixed ¢ again increase monotonically with N~, N3 -- 0 constituting a free 
uncontaminated surface and the limit N3--,oo giving a rigid bounding plane. 

50 

F , '  p . a U  

48  

46 

44 

42 

40  

38 

36 

34 

a / h  , 1 . 0  

:----------- a / h  . O" 1 
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1 7 - 6  

1 7 . 5  

17-4  

17.3 

1 7 . 2  

17 .1  
/ 

32 17-0 
10 : 10 ' 10 ° Nj  10 ~ 10 2 

Figure 2. Log-linear plots o f  F/paU against N~ for a/h = 1.0 and O. I in the adsorbtion/desorbtion 
case for the disk. The left-hand vertical scale pertains to a/tt = 1.0. the right-hand scale to 

a,'h = 0.1. 

F /p .aU 



ON "rile SLOW TRANSLATION OF A SOLID .SUBMERGED IN A FLUID 241 

Table 2. Values of F/Fz for a/h ffi i.0. 0.1 aad various values of N~ 
, ~,, , , , 

N 3 a / h  = 1.0 a / h  - 0 . 1  N 3 a / h  - 1.0 a / h  - 0 . 1  

0 . 0  2 . 0 5 3 6  1 .0678 1 .75  2 . 5 9 4 0  1 .0769  

0 . 0 2 5  2 . 0 7 1 4  1 .0679  2 . 0  2 . 6 2 8 0  1 . 0 7 5 6  

O.05 2 . 0 8 8 5  1 .0680 3 . 0  2 .7261  1 . 0 7 8 3  

0 . 0 7 5  2 .10~8  1.0681 4 . 0  2 . 7 9 0 7  1 .0804  

0 .1  2 .1205  1 .0683  5 . 0  2 . 8 3 6 7  1 .0822  

0 . 2 5  2 .2033  1 .0690  6 . 0  2 . 8 7 1 3  1.0837 

0 . 5  2 . 3 1 0 4  1 .0702 7 .0  2 . 9 1 9 8  1.0861 

0 . 7 5  2 . 3 9 2 3  1 .0713  10 .0  2 . 9 5 2 ~  1 .0880  

1.0 2.4577 1.0723 50.0 3.0810 1.0990 

1.25 2 . 5 1 1 3  1 .0732  100 .0  3 . 1 0 0 6  1 .1016  

1 .5  2 .5564  1.0241 ~ 3 . 1 2 1 3  1 . 1 0 4 9  

4.3 Bulk diffusion model 
In this case the three simultaneous integral equations [64]-[66], with kernels [67]-[72] 

are to be solved. Numerical solution by EI-gendi's methd is entirely feasible, but has not 
been carried out to date owing to limited resources. Thus we content ourselves with some 
observations on the iterative solution when c <~ I and N4, N~ are of order unity. A 
somewhat lengthy calculation then produces the Neumann series 

2 2(3N~+2, 2)" 3N~ (3N~+2)~'~t ., 2 ~  3Ns(3N4+2) 
G(x) .... jc - - -  rc'l. n(N4+ I) 3 .-'(N,+ I n" (2(N, + I)" + + 

(3N4 + 2) ~ 3Ns: 5N~ + 2 5N~ + 2 } 
n-'(N4 + I) ' ' t  (N ,+  I) - ~ - '  + 6(N,+ I ~ )  + 2(N,+ I ~ )  x '  + 0(~'), [821 

(3N4 + 2) , 
J(x) x~- + 

g2(N~ + i) 
I {(3N4f 2)-" 

n:(N4 + I): 

) 
+ 3Ns(2Na + 1) - 6(N~ + I)~ + 0(~) ,  

.g 

[83] 

and 

L(x)=n2(N~+l)~ nZ(N~+l) 2 - 3Ns ~~+O(c4). [84] 

Further, the drag ratio is found as 

F, n(N~+ I) c + n(N~+ !) z + + - -  = rc n(N4 +'1 )~ 

{3Nd3N, + 2) + (3N~ + 2) ~ 5 (Na + 2)(N4 + I)"} c "~ + O(~4). [85] X " m 

tr- 3 

It is of interest to note that to O(c2), [85] agrees with the result of [63] in 1. and we 
conjecture that [63] of I remains valid for an arbitrary body. despite the caveat in I. 
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However. if the Neumann condition on n '  at the disk surface is replaced by the Dirichlet 

condition n '  = 0, then after carrying out the iterative solution the drag ratio is obtained 

F---~ rc(N; + ! + n(N, + i ) :  + rt + O(E-~). [86] 

a s  

The final brace in [86] differs from that in [63] of  I by the term -N4/rt.  and therefore in 

this instance the effect of  the translating disk on solute concentration cannot be ignored 

to O(~ :). 

5. THE TRANSLATING SPHERE PROBLEM 

Suppose now that the translating body is a rigid sphere of  radius a, whose centre is at 

an instantaneous depth h below the surface = = 0. We assume that the disk is completely 
submerged so that a/h < I. The geometrical configuration is best described in terms of 

bispherical coordinates (~. q. ~). related to cylindrical coordinates (p. ~b, =) by 

c sin ,7 c sinh 
z = [87] 

P = cosh ,~ - cos q" cosh ~ - cos q' 

where c > 0 is a scale parameter, - ~ < ¢ < ac, and 0 < q < n. The curves ~ = constant are 

a family of  coaxial spheres having .,- = 0 (i.e. ~ = 0) as radical plane. The translating sphere 

is given by ¢ = [l(> 0), and its distance h from the plane and radius a are 

It = c coth 1/, a = c cosech [L [88] 

The Iluid motion is conveniently expressed in terms of a stream function ~b, the velocity 

components being 

u p ?z '  w P ?p, 

and in bisphcrical coordinates $ satisfies the equation 

AI4~ = O, 

where, with s = cos q, 

= - + ( I - s ' ) ? S  ( c o s h ¢ - s ) ~  . 
(,-  

[901 

[911 

where 

U,,(¢) = a,, cosh (n ' " ~)¢ + h .  s i n h  ( n  - ~-)-" -~) ~ " - -  z~, + c , c ° s h ( n  + :  ¢ + d ,  s i n h ( n + ~ ) g .  [93] 

= (cosh g.- s)-! Z U.(?.)C;),(s). [92] 

As originally shown by Stimson & Jeffery (1926) (see also Brenner 1961), the appropriate 

general solution of [90] has the form 
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I and C ~ l ( s )  is the Gegenbauer polynomial of  order n + 1 and degree - ; .  defined in terms 

of Legendre polynomials by 

Cd-J l ( s )  = ( P n - , ( s )  - P .  ~ ~(s)) /2n + 1. [94] 

The C £ J ~ ( s ) .  n = 1 . 2  . . . . .  form a complete orthogonal set on [ -  1.1]. with the orthogo- 
nality relation 

j "  -~ - '  2 C. ~-i(x) C.. ~ ,(x) dx - " [95] 
l)0.m • -1 l - x'- n ( n  + l ) ( 2 n  + 

It also follows from the work of  Stimson and Jeffery that in terms of the coefficients 
a . . . . . . .  d. .  the drag lbrce on the sphere is - F z .  where 

F - 2x/~'n/' ~ (a, + b, + c, + d,). [96] 
C' 

We next determine the coelticients in [96] from the surfactant and no-slip boundary 
conditions. Condition [5] requires that d~b/@ = 0 on .: = 0. which can be satistied by setting 

= 0 on ~ = 0. From [921. [931 and the completeness of  the C £ ) l ( s )  this implies that 

a . + c . = 0 ,  n =  1.2 . . . .  [97] 

On the sphere ( =/~ Stimson and Jeffery point out that the no-slip conditions are equivalent 
to 

~, + . ; p - U  = 0 a n d  d-~ (~, + ~p:U) = 0 .  [981 

which, using [92] and [97]. leads to 

A~b, = - c , { 2 n  + 3 - (2n + I) cosh 2[~ - 2 cosh (2n + I)/~ } 

- 6.(2n + 3){(2n + 1) e-'" + 2 e-'"~ ÷ t,a _ 2n + I }. [991 

and 

A.d. = -c .{2n  - 1 - (2n + I)cosh 2fl + 2cosh (2n + I)fl} 

- ,~ . (2n  - I ) { ( 2 n  + I ) e - :" - 2 e - ' : "~ '  '~ - 2 n  - 3 }. [ 1001 

where 

A. = 2 sinh (2n + !)/3 - ( 2 n  + I ) sinh 2// [I 0 I] 

and 

6~ = c " U n ( n  + I)/(2n - i)(2n + 3)x//2. [102] 
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From [96]. [97]. and [99]-[102] the drag ratio F/F,~. where F ,  

F 4 ~ ( 2 n + l  4 n ( n + l )  
sinh/~ ,X, ) ?. + 3 sinh fl 

- -  = . 3 )  F~ A. . = 1 (2n 

x {4 cosh"(n + ~)'8 + (2n + A .  I): sinh: fl - 1}, 

= 6rc#aU. is now found as 

[1031 

where ( . = - c . x / 2 / U a  z. Equations for the determination of ~. now follow from the 
remaining film boundary conditions, which we consider in the surface diffusion and 
adsorption/desorption situations. 

5. I Surface diffusion moth.I 
The appropriate film boundary condition is [6]. and substituting [89] and [92] into [6] 

gives the nondimensionalised equation 

whcrc 

and 

- 2Nl(I - -s )  ~ (2n + I)?.C.-),(s) = - 4  sinh-',8 ~ (r.?. + K.)Cd-~,(s) + (I -- s)N,. 
n ~ l  n = [  

. t x ~ (t . i ,  + K.){(n - I ) ( 2 n -  I)C2"!(s)-(2n + I)'CG-i(s) 
n = l  

+ ( n + 2 ) ( 2 n + 3 ) C d ) : ( s ) } ,  - I < s < l ,  [1041 

I } r, = {(2n + I)" sinh-' ,8 - 4 sinh-' (n + ;)[/~/A. sinh ,8. [106] 

Defining ~:,- 0 for n < 0. the orthogonality relation [95] and the recurrence relation 

(2,1 + l ) sC£) t ( s )  = (n - I)C.- !(s) + 01 + 2 )C ; ) : ( s )  

lead to the following infinite banded set of  linear equations for the coefficients ?.. n = I. 

1 • • • 

N2(n + 2)(n + 3){(r. +,c-. ~4 + r . , , )  - 4(r. ~ .lc'-, +3 + x. ,3) 

+ 6('c, +..c-, + z + x, ÷:) - 4(r, + i ( , ,  t + x,+ i) + (~dS, + x,)} 

+ 2Nl{(n + 2)?.+~-- (2n + 5)(.+2 + (n + 3)3.÷a} 

+ 4 s inh'  ,8 (3 . ,  :c-., 2 + x , ,  2) = 0, n > 0. [107] 

A further relation between the ?.-coefficients, useful in checking numerical work, can 
be derived from [104]. Dividing [104] through by I - s  and using the results 

C . - ~ , ( I ) = 0 ,  lim C . - ~ l ( S ) / ( I - - s ) =  I. n >  I, 
, t ~ l  - 

h', = sinh a '8 n(n + I)(2n + I)/A,. [105] 
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it follows that on letting s--. 1 - ,  

Since 

( rd ,+  x j = 0 .  [1081 

l i m r , =  -cosech/~ and l i m x , = 0 ,  

it is apparent from [108] that lira 6, = 0. 
n ~  

5.2 Adsorption/desorption model 
The relevant film boundary condition is now [7]; as with the disk problem a set of linear 

equations can be derived from [107] by means of the limiting process D,--.O, with ff + K 
replaced by ~l + x + nokTfl - ~. However a simpler set of linear equations with a matrix of 
smaller bandwidth is obtained by direct application of [7]. It is found that 

- 2 ~ (2n + I )GC. - ) t ( s )=  N, ~ (r.F.+ K.){(n - I)(2n - i ) C Z ! ( s ) -  (2n + l ) 'C;2 , ( s )  

+ (n + 2)(2n + 3)Cd'~2(s)}, 

Orthogonality of the Cd},(s) now yields the linear set 

-- I < s  < I. [109] 

N~{(n + I)(% + :~, ~. 2 + K,. ,) -- (2n + 3)(r,.  ic-, ,. i + ~:,. i) 

+ ( n + 2 ) ( ~ / : , + ~ c , ) } + 2 6 , ÷ , = 0 ,  n > 0 ,  [llOl 

again defining c-.--0. Summation of equations [! 10] gives the useful relation 

e,=0,  [II11 
n-L 

with lim ~ = 0. 
n ~ l  

6. NUMERICAL RESULTS FOR THE SPHERE 

For general values of the parameters N,, N,., and N.~ it is not possible to solve in closed 
form the recurrence relations for the ft, furnished by [107] and [I 10]. Thus the method of 
truncation to a finite set of simultaneous linear equations is employed. In practice retention 
of the first 60 equations was found to be entirely satisfactory from the convergence point of 
view; this amounts to setting (, = 0 for n > 61. and the closeness to zero of  the finite sums 
obtained in [108] and [I I I] by replacing the upper limit by 60 provides a convincing check 
on the convergence and accuracy of the numerical process, in all cases the truncated set of 
banded simultaneous linear equations was solved using a library routine, followed by 
evaluation of the summations in the drag ratio formula [103]. 

6. I Surface diffusion model 
In order to vary the mode of numerical coverage of surfactant effects we present the 

results for the surface diffusion model in a different format from that in section 4. I for the 

MF Vol 9. No. 3--C 
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Table 3. Values of F/F~ for varying h/a and (N~. N:)= (1.1). (10.10) and (0.1,0.1) 

clean 
h/a  NI-N2-1 N I = N 2 = 1 0  NI=N2-0.1 Surface 

1.5 2.7277 2.5122 3.0582 2.0387 

2.0 1.9389 1.8087 2.0813 1.5967 

2.5 1.6515 1.5560 1.7350 1.4242 

3.0 1.5006 1.4246 1.5567 1.3302 

3.5 1.4072 1.3440 1.4478 1.2705 

4.0 1.3435 1.2895 1.3744 1.2292 

4.5 1.2972 1.2502 1.3215 1.1988 

5.0 1.2620 1.2205 1.2817 1.1756 

6.0 1.2120 1.1786 1.2257 1.1423 

7.0 1.1781 1.1505 1.1882 1.1197 

8.0  1.1535 1.1303 1.1614 1,1032 

9.0 1.1350 I . I150  1.1412 1.0907 

10.0 1.1205 1.1031 1,1255 1.0810 

disk. In table 3 values of F/F,o are displayed for a range of  values of~ - 1 = h/a, and the pairs 
of  values (I,!), (10,10), (0.I,0.1) for (NI, N,). The final column gives F/F,~ for a free 
uncontaminated surface, obtained by letting N~--. oo for fixed N2. Equations [I 07] then have 
the trivial solution ?, = constant = 0, since ?,---,0 as n ~ o o .  The ratio F/F~ is given by the 
second summation in [103], a result in agreement with that of Brenner (1962). It is also worth 
noting that for a rigid bounding plane, letting N2---,oo with N~ fixed gives 

r,?n + x, = constant = 0, 

since xa, ?n"*0 as n--. oo. The resulting expression for F/F~ is in accord with that obtained 
by Brenner (1962) (the earlier result of  Stimson & Jeffery (1926) contains misprints). 

The variation of F/F~ is further exhibited in figure 3 for the values (5, 0.5), (!,1), (0.5,5) 
of(N~, N2), and for the clean free surface. The drag ratio tends to infinity as h/a --, I, i.e. as 
the sphere approaches the surface. However it must be remembered that as h/a--* 1, the 
assumption that the surface remains plane will become invalid (further discussion of this 
assumption can be found in Bart 1968). 

6.2 Adsorbtion /desorbtion model 
On applying the truncation method to [I 10], numerical results are obtained for the 

adsorbtion/desorbtion film process. Again, [I I I] was used as a check on the convergence of  
the process. In table 4 values of  the drag ratio F/F,~ are given for h/a = 1.5, 2, 5, and 10. 

Nj -- 0 gives the uncontaminated free surface, with N3--* ~ and cn = - xn/rn in the solid 
bounding plane configuration. The effect of  the presence of  the surfactant is also displayed 
in figure 4, in which log-linear plots of  F(N3)/F(O) against Nj where F(0) is the drag force 
for a clean surface, are given for h/a = 1.5 and h/a = 2. 

It is of  some interest to estimate the accuracy of  the asymptotic formulae obtained in I. 
When N3 = O(I),  the sphere result of  I ([59]) is 

Fl=l+~c+9(l+N,)c,+O(¢3), 
F,~ 
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Figure 3. Graphs  of F/F~ against h/a for the sphere in the surface diffusion case with (N,, N,) = 5, 
0.5). (I. I), (0.5. 5) and (ce, N2). 
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Figure 4. Log-linear plots of F(N~)/F(O) against N~ for h/a--1.5 and 2 in the 
adsorbtion/dcsorbtion ¢a,~ for the sphere. 
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Table 4. 

R. SHALL and D. K, GOODEN 

Values of  F/F,~ for h/a -- 1.5, 2, 5 and 10, and various values of  .~'3 

N 5 h / a  - 1.5 h / a  - 2 .0  h /a  - 5.0 h / a  - 10.0 

0 .0  2.0387 1.5967 1.1756 1.0810 

0.025 2.0569 1.6038 1.1763 1.0811 

0.05 2.0744 1.6107 1.1771 1.0813 

0.075 2.0912 1.6174 1.1778 1.0814 

0.1 2.1074 1.6238 1.1785 1.0816 

0.25 2.1930 1.6585 1.1824 1.0825 

0 .5  2 .3047 1.7044 1.1882 1.0859 

0.75 2.3909 1.7409 1.1935 1.08~2 

1.0 2.4603 1.7707 1.1977 1.0864 

1.25 2.5176 1.7957 1.2017 1.0876 

1,5 2.5660 1.8171 1,2052 1.0886 

1.15 2.6016 1.8356 1.2085 1.0896 

2.0 2.6437 1.8518 1.2114 1.0905 

3 ,0  2.7512 1.9010 1.2209 1,0937 

4.0 2.8230 1.9344 1.2281 1.0963 

5.0 2.8745 1.9589 1.2357 1.0984 

6.0 2.9135 1.9776 1.2382 1.1003 

8 .0  2.9688 2.0044 1.2651 1.1033 

I0 .0  3.0062 2.0229 1.2502 1.1056 

S0.O 3.1569 2.0997 1.2748 1.1190 

100.O 3.1804 2.1121 1.2796 1.1221 

Table 5. The approximate and computed drag ratios FJF, and F/F,. for wtrious values of  ~" and 
N! 

c - 0 . 5  

N 3 0 .5  1.0 1.5 2.0 

F I / F  1.5859 1.6563 1.7266 1.7969 

F / F  1.7044 1.7707 1.8171 1.8518 

% e r r o r  6.95 6 .46  4.98 2.96 

c - 0 . 2  

N 3 0 .5  1.0 1.5 2.0 

FI /F  1 . 1838 1 . 1950 1 . 2063 1 . 2175 

F / F  I. 1882 1. 1977 1.2052 1.2114 

% e r r o r  0 .37 0 .23  0 .09  0 .50  

and in table 5 we compare the approximate drag ratio FjlF,, obtained from [I 12], with the 
numerically computed ratio F/F, for N~ = 0.5(0.5)2.0. For c = 0.5 the percentage error 
ranges from about 7~,~ down to 3~ ,  whereas for ¢ = 0.2 the percentage errors are much 
smaller. Similar accuracy is obtained for the other models and for the disk. 

7. C O N C L U S I O N  

In the preceding pages the formulation given in I for a solid moving slowly in a 
semi-infinite liquid, whose surface is contaminated with a surfactant film, has been applied 
to the particular cases of  a translating disk and sphere. All the induced fluid motions have 
been axisymmetric and quasi-steady, with no restrictions placed on the various parameters 
in the theory which arise from either the geometry of  the configuration or the physics of  the 
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film process. Thus the problems result in a considerable amount of numerical analysis, 
involving the solution of simultaneous Fredholm integral equations of the second kind for 
the disk, and sets of simultaneous linear equations for the sphere. The paper contains 
representative numerical results in both tabular and graphical form for the problems 
investigated, and the opportunity has been taken to vary their mode of presentation so as 
to avoid repitition and to indicate as clearly as possible the influence of the surfactant on 
the drag experienced by the solid. The accuracy of the asymptotic drag results in I has also 
been estimated. 

Most detailed attention has been devoted to the film processes of surface diffusion, and 
absorbtion from and desorbtion to the bulk fluid, but we have included a formulation of the 
sealed-disk problem in which there is bulk diffusion, at low Peclet number, of a soluble 
surfactant into the film. No calculations have been made for the bulk diffusion model for 
a translating spherical particle, but it is clear that the problem is again reducible to the 
solution of sets of simultaneous linear equations. Thus, for an impervious sphere, the 
harmonic function n' is represented in bisphericai coordinates as 

n' = (cosh ~ - s)-½ ~ {p. cosh (n + ~)~ + q. sinh (n + ~)~ } C.-)t(s). 
n = l  

[!!31 

The condition that On'/d¢ = 0 on ~ = fl then leads to an infinite set ofequations relating the 
sequences {p,} and {q,}. Equations [971, [99] and [1001 still obtain, and condition [101, 
together with [I I], generate sufficient linear equations for the determination of the sequences 
of constants in [113] and the stream function. The drag is still given by [96]. 

For simplicity the various film processes have been treated separately, but since the 
theory is linear it is clearly possible to consider several processes operating simultaneously. 
A considerable complication in algebra ensues, but no new principles are involved. The 
approximation of a planar surface throughout the motion has been employed, and although 
widely used by various authors this is manifestly unsatisfactory for small a/h in the disk case 
and for a/h near unity for the sphere. Berdan & Leai (1982) and Lee & Leal (1982) have 
recently studied ways of allowing for the deformation of a surface or interface between two 
bulk fluids, and it may prove possible to use their ideas in the surfactant case. It is certainly 
possible to extend the calculations of this paper to the two-fluid case in which a second bulk 
fluid occupies the region z < 0. Again, with no new principles involved, the algebra is more 
complicated and the number of dimensionless parameters in the analysis increases. 
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